

Detection of *S. aureus* Enterotoxin-B (SEB) ELISA Kit IBT Bioservices cat# 0123-001, lot# 1909002 Instructions for Use

1. Purpose:

For the quantitative measurement of *S. aureus* Enterotoxin-B (SEB) in bacterial culture media and serum (mouse and rabbit)

Z.	Reage	nts sup	plied:	
-				

Reagent supplied	Lot Number	Stock Concentration	Amount	Storage Temperature		
Capture Antibody	09.10.2019-P	50X	250 µL	1-Week 4°C More than a week -20°C		
Standard 09.10.2019-R		10X 125 μL		-20°C		
Detection Antibody			250 µL	1-Week 4°C More than a week -20°C		
Detectior	n Reagent	2000X	15 µL	4°C		
TMB one-st	ep substrate	N/A	15 mL	4°C		

3. Reagents required but not included in the kit:

- DPBS 1X, sterile (MediaTech/Corning cat# 21-031-CM) stored at ambient temperature, for diluting capture antibody
- StartingBlock T20 (PBS) Blocking Buffer (Pierce/Thermo cat# 37539) stored at 2-8°C, for blocking and as diluent for standard, samples, detection antibody, and detection reagent
- DPBS powder (MediaTech/Corning cat# 55-031-PB) stored at 2-8°C, for preparing ELISA Wash Buffer
- TWEEN-20 (Acros cat# 23336-0010), stored at ambient temperature, for preparing ELISA Wash Buffer
- Deionized water

4. Materials required but not included in the kit:

- MaxiSorp flat bottom, polystyrene, 96-well plates (Nunc cat# 439454)
- Polypropylene TiterTubes, maximum volume for each tube is 1 mL (Bio-Rad cat# 223-9391) or equivalent, used to prepare standard and sample dilutions
- Microplate sealing film
- Polypropylene 15 mL and 50 mL conical tubes
- Reagent reservoirs
- Absorbent papers

5. Equipment required but not included in the kit:

- Automatic plate washer (example: BioTek Elx450)
- Plate reader with capability of measuring absorbance at 650 nm (example: Molecular Devices plate reader)
- Software for graphing the standard as a 4PL curve and for calculating the unknown samples from the standard curve (example: Softmax software, Pro V.5.4.5)
- Single-channel and multi-channel pipettes

6. Assay Procedure:

- 1. Prepare Capture antibody solution
 - Briefly vortex the Capture Antibody vial for 5-10 Seconds
 - Dilute 50X stock concentration into 1X in PBS (1X) solution
 - Example: For one full plate, add 225 µL Capture antibody to 11 mL of PBS 1X and mix the solution by vortexing for 5-10 seconds
- Add 100 μL/well of Capture antibody solution to the MaxiSorp plate. Cover plate using plate sealing film. Incubate covered plate overnight at 2-8C (Alternatively, the plate can be incubated at room temperature for 2 hours on a plate shaker with a speed of 550 rpm, which can be used on the same day)
- The following day, equilibrate plate and StartingBlock Buffer to ambient temperature for at least 15 min.
- Empty contents from the plate and wash 3 times (each time 300 µL/well) with Wash Buffer using an automatic plate washer or multi-channel pipette.
- Add 300 µL/well of StartingBlock Buffer to block non-specific binding. Incubate for at least 30 min at ambient temperature.
- During blocking step, prepare dilutions of STANDARD and UNKNOWN test samples in Titer Tubes.
 - a. STANDARD
 - Briefly vortex the Standard solution vial for 5-10 Seconds
 - First dilution: Dilute 10X stock concentration into 1X in StartingBlock

For Example: For duplicate of standard Curve, add 50 μL STANDARD to 450 μL StartingBlock Buffer and mix the solution by vortexing for 5-10 seconds

- Serial 1:4-fold dilutions
 - $_{\odot}$ $\,$ Transfer 100 μL from the previous dilution to 300 μL StartingBlock Buffer
 - Discard pipet tip
 - $\circ~$ Mix the solution by vortexing for 5-10 seconds and use a new pipet tip to transfer 100 μL to the next dilution
 - o Repeat for subsequent dilutions until Standard-7
 - Standard-8 is only StartingBlock

Standards	Concentration (ng/mL)				
STD-01	500				
STD-02	125				
STD-03	31.3				
STD-04	7.81				
STD-05	1.95				
STD-06	0.49				
STD-07	0.12				
STD-08	0				

- b. UNKNOWN
 - Prepare dilutions using StartingBlock Buffer at dilution factors determined by the end user (Minimum recommended dilution is 1:8)
- Empty contents from the plate and wash 3 times (each time 300 µL/well) with Wash Buffer using automatic plate washer or multi-channel pipette.
- Use multi-channel pipettor to transfer 100 µL/well of STANDARD or UNKNOWN dilutions from TiterTubes to duplicate wells in MaxiSorp plate. Cover plate with plate sealing film. Incubate for 1 hour at ambient temperature.
 - At the end of the 1-hour incubation step, prepare Detection Antibody solution
 - Briefly Vortex the Detection Antibody vial for 5-10 Seconds
 - Dilute 50X stock concentration into 1X in StartingBlock buffer
 - Example: For one full plate, add 225 µL Detection antibody to 11 mL of StartingBlock buffer and mix the solution by vortexing for 5-10 seconds
- Empty contents from the plate and wash 3 times (each time 300 µL/well) with Wash Buffer using automatic plate washer or multi-channel pipette.
- Add 100 µL/well of Detection Antibody solution to plate. Cover plate with plate sealing film. Incubate for 1 hour at ambient temperature.
- 11. At the end of the 1-hour incubation step, prepare Detection Reagent solution
 - Briefly spin the Detection Reagent vial
 - Dilute Detection Reagent 1:2000:
 - Example for full plate, add 6 µL of Detection Reagent to 12 mL StartingBlock Buffer and mix the solution by vortexing for 5-10 seconds
- 12. Empty contents from the plate and wash 3 times (each time 300 µL/well) with Wash Buffer using automatic plate washer or multi-channel pipette.
- Add 100 µL/well of Detection Reagent solution to plate. Cover plate with plate sealing film. Incubate for 1 hour at ambient temperature, shielded from light.
- 14. During this time, equilibrate TMB substrate to ambient temperature, shielded from light.
- Empty contents from the plate and wash 3 times (each time 300 µL/well) with Wash Buffer using automatic plate washer or multi-channel pipette.
- 16. Add 100 μL /well of TMB substrate. Incubate plate at ambient temperature, shielded from light for 30 minutes
- 17. Immediately following the 30 min color development, place plate in the plate reader programmed to shake the plate for 5 sec prior to read at 650 nm wavelength.
- 18. Prepare a standard curve from the data produced from the STANDARDS with concentration on the x-axis (log scale) vs. absorbance on the y-axis (linear). Interpolate the concentration of the UNKNOWN samples from the standard curve.

Notes regarding plate washing:

- ELISA Wash Buffer (1X DPBS + 0.05% TWEEN-20):
 - Dissolve one bottle of DPBS powder in deionized water to prepare 10 liters of 1X DPBS
 - Add 5 mL TWEEN-20 to 10 L of 1X DPBS
 - Gently mix
- Use BioTek plate washer model ELx405, "COSTAR_FLAT" program (Number of cycles: 3; Volume wash buffer: 300 μL/well).
- Empty the MaxiSorp plate's content into biohazard container and blot on paper towels
- Wash plate using "COSTAR_FLAT" program
- Tap plate on paper towels to remove any residual liquid.
- Immediately add solution to the wells. Do not let the wells dry for extended time

Example of	Template	and	Standard	Curve o	of SEB q	ELISA Assay

Example of Template and Standard Curve of SEB GELISA AS EXAMPLE OF PLAT												
	1	2	3	4	5	6	7	8	9	10	11	12
Α	STD-01	STD-01	Unknown-01	Unknown-01								
В	STD-02	STD-02	Unknown-02	Unknown-02								
С	STD-03	STD-03	Unknown-03	Unknown-03								
D	STD-04	STD-04	Unknown-04	Unknown-04								
E	STD-05	STD-05	Unknown-05	Unknown-05								
F	STD-06	STD-06	Unknown-06	Unknown-06								
G	STD-07	STD-07	Unknown-07	Unknown-07								
н	STD-08	STD-08	Unknown-08	Unknown-08								
		EXAM	PLE OF STANDA	RD CURVE					DATA A	NALYSIS		
0 0 0 0 0 0 0 0 0 0 0 0 0 0						SoftMax software is used to calculate the ng/mL of the Unknown based on the 4PL standard curve using the following equation: $X = C \cdot \left(\frac{A - Y}{Y - D}\right)^{(1/B)}$						
						X = ng/mL of SEB						
						Y = Absorbance Value (OD 650 nm)						
					A = Lower asymptote							
					B = Slope C = Inflection point							
					D = Upper asymptote							
U = 2.00						D = Opper asymptote						

